Nanoparticles formation mechanisms through the spark erosion of alloys in cryogenic liquids.

نویسنده

  • Gennady Monastyrsky
چکیده

Mechanisms of the formation of nanoparticles of some B2 shape memory intermetallic compounds, glass-forming Zr-based alloy, and pure Ti obtained by spark erosion method in liquid nitrogen and argon are considered. One of peculiarity is a foam-like structure, which covers the surface of micron-sized particles that appear during spark erosion. Such morphology is related to the nanosized particles gathered in agglomerates. Detailed examination of those particles allows proposed several mechanisms of their formation. The mechanisms explains two kinds of nanosized particles: particles of several tens and even hundreds of nanometers are formed due to explosion of molten droplets while the smaller particles having in turn a different structure and morphology are formed as a result of condensation of evaporated constituents under different conditions. The latter have the composition usually different from the target composition while the composition of the former is very close to the target (master alloy) composition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Investigation of Spark Plug Temperature in Bi-fuel Engine and Its Effect on Electrode Erosion

Temperature is one of the effective parameters in erosion of spark plug electrodes. In this research, temperature of spark plug was measured in engine's different operation conditions with two types of fuels: compressed natural gas and gasoline. Test results showed that, temperature of center electrode is lower than ground electrode and maximum difference between them is 110ºC that occurs at...

متن کامل

High Temperature Erosion- Oxidation Behavior of Nickel- Based Alloys Containing Mo in Fluidized Bed Waste Incineration

High-temperature erosion-oxidation behavior of nickel-based alloys containing 0-7 wt.% Mo in fluidized bed waste incineration conditions was studied. A stream of hot condensed air with a flow rate of 25 L/min caused hot silica sand (700 °C) mixed with 0.5 wt.% of chloride salts to hit the specimens for 250 h. By removing the erosive factor, the high-temperature oxidation behavior of the alloys ...

متن کامل

Effect of electrode erosion on the required ignition voltage of spark plug in CNG spark ignition engine

In this article, the electrode erosion and the gap growth of spark plugs were measured on of a CNG fueled engine after durability tests. Then, the required ignition voltage and the spark quality were investigated by a spark plug test rig. Considering results of measurements, the gap growth increased as the running time increased. Thus, the gap growth of spark plugs with 200 and 280 hours runnin...

متن کامل

Review on ultrafined/nanostructured magnesium alloys produced through severe plastic deformation: microstructures

A review on the microstructural evolution in magnesium alloys during severe plastic deformation waspresented. The challenges deserved to achieve ultrafine/ nanostructured magnesium were discussed.The characteristics of the processed materials are influenced by three main factors, including i)difficult processing at low temperatures, ii) high temperature processing and the occurrence ofdynamic r...

متن کامل

Experimental Investigation by Cryogenic Treatment of Aluminium 6063 and 8011 and NiCoW Coating to Improve Hardness and Wear (TECHNICAL NOTE)

The aim of this paper is to focus on the effect of cryogenic treatment on the microstructure, mechanical and wear properties of Al 6061 and Al 8011.  The first objective was to understand the degree to which hardness of these aluminium grades have been enhanced by giving  cryogenic on the specimens. The second objective is to check the wear resistance property of these two aluminium specimens i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale research letters

دوره 10 1  شماره 

صفحات  -

تاریخ انتشار 2015